GBIC Summary

Product Number	Layer 1 Interface Type	Description
WS-G5482	$\begin{gathered} \text { Copper (1000BaseT, RJ- } \\ 45) \end{gathered}$	First-generation solution, used in the 3500XL, 3550, and 2900MXL only. Superceded by the WS-G5483. Not supported in any other chassis due to power requirements.
WS-G5483	Copper (1000BaseT, RJ-	2nd-gen GE copper solution, solving power
GLC-T	Copper (1000BaseT, RJ-	SFP version of the 5483.
WS-X3500-XL	Copper (1000BaseT, Proprietary)	Gigastack GBIC, used in lower-end switches as a lowcost alternative to fiber and copper GBIC's. Can cascade switches in a chain using these GBIC's.
CAB-SFP-50CM	Copper (2Gbps full duplex,Proprietary)	50 cm cable is an alternative to using SFP transceivers when interconnecting Catalyst 3560 switches through their SFP ports.
WS-G5484	Fiber, short wavelength (1000BaseSX, SC connector)	Class 1 LED of 850 nm for (short-range) applications.
WS-G5486	$\begin{gathered} \text { Fiber, long haul } \\ \text { (1000BaseLX/LH, SC } \\ \text { connector) } \\ \hline \end{gathered}$	Class 1 laser of 1300 nm for (medium-range) applications.
WS-G5487	Fiber, extended distance (1000BaseZX, SC connector)	Class 1 laser of 1550 nm for (long-range) applications.
GLC-BX-U	1000BASE-BX10-U Small Formfactor Pluggable (SFP, LC connector)	1000BASE-BX10-U 1310 nm upstream bidirectional single fiber - need GLC-BX-D on downstream side
GLC-BX-D	1000BASE-BX10-D Small Formfactor Pluggable (SFP, LC connector)	1000BASE-BX10-D 1490 nm downstream bidirectional single fiber - need GLC-BX-U on upsteam side
GLC-SX-MM	1000BaseSX Small Formfactor Pluggable (SFP, LC connector)	SFP version of the 5484.
GLC-LH-SM	1000BaseLX/LH Small Formfactor Pluggable (SFP, LC connector)	SFP version of the 5486.
GLC-ZX-SM	1000BaseZX Small Formfactor Pluggable (SFP, LC connector)	SFP version of the 5487.
GLC-GE-100FX	100BaseFX Small FormFactor Pluggable (SFP, LC Connector)	SFP for connecting some models of fixed-configuration switches with SFP slots to 100BaseFX networks.
CWDM-GBICxxxx	Fiber, CWDM, SC connector	Class 1 laser at varying lambdas for OADM applications.
CWDM-SFPxxxx	Fiber, CWDM, LC connector	SFP version of the CWDM GBIC's.
DWDM-GBICxxxx	Fiber, DWDM, SC connector	Class 1 laser at varying lambdas for DWDM applications.
XENPAK-xxxx	Fiber, varying distances, SC or Infiniband	10GE modular optic of choice.

A note on Third-Party GBIC's

WDM, copper, and SFP GBIC's all include a GBIC EEPROM "code" that certifies the GBIC as coming from Cisco. New versions of IOS/CatOS check this code to verify the GBIC - if the code is not found, or is not valid, the software will disable the port in software and will not allow traffic to pass. Older GBIC's (5484/5486/5487) were manufactured before this feature was introduced, and do not contain this feature. Regardless, TAC will not troubleshoot a GBIC that was not purchased from Cisco, the same policy as Flash/DRAM memory.

Portable Product Sheet - GBlC's

Cabling Specifications

GBIC	$\lambda(\mathrm{nm})$	Core Size (microns)	Modal λ	Maximum Cable Distance
Copper	N/A	N/A	N/A	328 ft (100 m)
SX	850	62.5	160	$722 \mathrm{ft}(220 \mathrm{~m})$
		62.5	200	$902 \mathrm{ft}(275 \mathrm{~m})$
		50	400	$1640 \mathrm{ft}(500 \mathrm{~m})$
		50	500	$1804 \mathrm{ft} \mathrm{(550} \mathrm{m)}$
LX/LH	1300	62.5	500	$1804 \mathrm{ft} \mathrm{(550} \mathrm{m)}$
		50	400	$1804 \mathrm{ft}(550 \mathrm{~m})$
		50	500	$1804 \mathrm{ft} \mathrm{(550} \mathrm{m)}$
		8, 9, or 10	N/A	6.2 miles (10 km)
ZX	1550	9 or 10	N/A	43.5 miles (70 km)
		8	N/A	62.1 miles (100 km)
CWDM	Various	8, 9, or 10	N/A	62.1 miles (100 km)

Physical Characteristics

Value	5483	5484	5486	5487	Gigastack
TX min. (dBm)	N/A	-9.5	-9.5	0	N/A
TX max. (dBm)		-4	-3	5	
RX min. (dBm)		-17	-20	-23	
RX max. (dBm)		0	-3	0	
Supply Current		200mA typical, 300 mA max			
Supply Voltage		6 V , max			
Surge Current		30mA			
Input Voltage		4.75-5.25V, 5 V typical			
Dimensions	$\begin{aligned} & 0.75 \times 1.55 \times 4.32 \mathrm{in} \\ & (1.78 \times 3.94 \times 11 \mathrm{~cm}) \end{aligned}$	$\begin{gathered} 0.39 \times 1.18 \times 2.28 \mathrm{in} . \\ (1 \mathrm{~cm} \times 3 \mathrm{~cm} \times 5.8 \mathrm{~cm}) \end{gathered}$			$\begin{gathered} 0.75 \times 1.54 \times 3.50 \mathrm{in} . \\ (1.90 \times 3.91 \times 8.89 \\ \mathrm{cm}) \end{gathered}$
Temp (Storage)	$\begin{gathered} \hline-4 \text { to } 149^{\circ} \mathrm{F} \\ \left(-20 \text { to } 65^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-40 \text { to } 185^{\circ} \mathrm{F} \\ & \left(-40 \text { to } 85^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$			$\begin{aligned} & \hline-13 \text { to } 158^{\circ} \mathrm{F} \\ & \left(-25 \text { to } 70^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$
Temp (Operating)	$\begin{aligned} & 32 \text { to } 113^{\circ} \mathrm{F} \\ & \left(0 \text { to } 45^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \text { to } 122^{\circ} \mathrm{F} \\ & \left(0 \text { to } 50^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$			$\begin{aligned} & 32 \text { to } 113^{\circ} \mathrm{F} \\ & \left(0 \text { to } 45^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$
Relative Humidity	10-85\% (non-condensing)				
Altitude	Up to 10,000 ft (3,000 m)				
Power Consumption	1.5W max	1.8 W max			2W max

Notes: GBIC's
SFP GBIC's are roughly identical to 548 x 's with two exceptions - Input Voltage is only 3.3 V typically, and measure $0.33 \times 0.52 \times 2.22 \mathrm{in}$. ($0.85 \mathrm{~cm} \times 1.34 \mathrm{~cm} \times 5.65 \mathrm{~cm}$). Their optical budget may be slightly less, as well, but the above numbers are valid approximations for the output of a SFP version.

Portable Product Sheet - GBlC's

Cisco Systems

LX GBIC Mode Conditioning Cable (CAB-GELX-625=)

Used with LX/LH GBIC to attenuate signal to be appropriate for MMF
Not needed with any other GBIC or when using LX/LH with SMF
One needed per side of the link

GBIC Regulatory Restrictions

There used to be a 12 or 24 maximum GBIC restriction to comply with FCC emissions regulations. This no longer applies. Now, you may install as many ZX and CWDM GBIC's in a chassis as desired, so long as the cards are of a certain rev that uses metal rails (instead of plastic rails)... 6416 rev 2.0, 6516 rev 4.0, 6816 rev 1.2, and 4306 rev 2.2 all include this, as do all future linecards. CWDM are technically limited to 92 per chassis, but many deployments will never approach this limitation.

Gigastack GBIC (WS-X3500-XL=)
Part number WS-X3500-XL (one gigastack GBIC and one 50 cm copper cable)
Also can order CAB-GS-1M (one meter gigastack GBIC copper cable)
Can daisy-chain top GBIC of a stack to the bottom for redundancy (only as of OS 12.0(5)X Compatible only with 3500 XL, 3550, 2950G, and 2900MXL switches

Gigastack GBIC Picture

Cascaded Configuration

CISCO CATALYST 3560 SFP INTERCONNECT CABLE - CAB-SFP-50CM=

The Cisco Catalyst 3560 SFP Interconnect Cable provides for a low-cost point-to-point Gigabit Ethernet connection between Catalyst 3560 switches. The 50 cm cable is an alternative to using SFP transceivers when interconnecting Catalyst 3560 switches through their SFP ports over a short distance.

Portable Product Sheet - GBlC's

Cisco Srstems

CWDM GBIC's

CWDM GBIC's are configured to emit a laser at a particular wavelength (lambda). These laser streams are then added/dropped off from a OADM (Optical Add-Drop Mux), which selectively drops channels off from a fiber. This allows multiple Gigabit Ethernet connections to be carried over a single pair of single-mode fiber for a much cheaper cost than conventional DWDM solutions.
However, they cannot be optically amplified.

Parameter	Symbol	Min	Typica I	Max	Units
Supply current	I_{s}		280	350	mA
Surge current	$\mathrm{I}_{\text {Surge }}$			400	mA
Input voltage	V_{cc}	4.75	5	5.25	V
Transmitter center wavelength	λ	$(\mathrm{x}-4)$	$(\mathrm{x}+1)$	$(\mathrm{x}+6)$	nm
Wavelength temperature			0.08		$\mathrm{~nm} /{ }^{\circ} \mathrm{C}$
Side mode suppression ratio Transmitter optical output dower	SMSR	30			dB
Receiver optical input power	$\mathrm{P}_{\text {in }}$	-31	-33	-7	dBm
Optical input wavelength	$\lambda_{\text {in }}$	1450		1620	nm
Transmitter extinction ratio	OMI	9			dB
Transmitter eye opening	-	40%			
Dispersion penalty at 60 km				2	dB
Dispersion penalty at 100 km				3	dB

Portable Product Sheet - GBlC's CWDM SFP GBIC's

CWDM SFP GBIC's are SFP-form factor versions of the CWDM GBIC's. They operate in the exact same manner, but have different operating characteristics, as shown in the

Parameter	Symbol	Min	Typica I	Max	Units
Supply current	I_{s}		220	300	mA
Maximum voltage	$\mathrm{V}_{\max }$	3.1	3.3	3.6	V
Surge current	$\mathrm{I}_{\text {Surge }}$			330	mA
Transmitter center wavelength	λ	$(\mathrm{x}-4)$		$(\mathrm{x}+7)$	nm
Side mode suppression ratio	SMSR	30			dB
TX optical output power	$\mathrm{P}_{\text {out }}$	0		5	dBm
RX optical input power	P_{in}	-29		-7	dBm
@1.25Gbps	$\mathrm{P}_{\text {in }}$	-28		-7	dBm
Optical input wavelength	$\mathrm{\Lambda}_{\text {in }}$	1450		1620	nm
Transmitter extinction ratio	OMI	9			dB
Dispersion penalty @100 km @1.25Gbps				2	dB
Dispersion penalty @100 km @2.12Gbps				3	dB

Product Number	Color
CWDM-SFP-1470 $=$	Gray
CWDM-SFP-1490 $=$	Violet
CWDM-SFP-1510 $=$	Blue
CWDM-SFP-1530 $=$	Green
CWDM-SFP-1550 $=$	Yellow
CWDM-SFP-1570 $=$	Orange
CWDM-SFP-1590 $=$	Red
CWDM-SFP-1610 $=$	Brown

Portable Product Sheet - GBlC's

CWDM GBIC OADM (Optical Add/Drop Multiplexors)

 channel. All are passive devices, requiring no power, and are unmanaged. They underwent a hardware "refresh" in late 2004 to newer models with less loss, a monitor port, LC connectors, and transparency to 1300nm lambdas, which means that existing GE signalling can be carried as well with minimal lnce

CWDM-OADM1-xxxx=

This single-channel OADM drops only one of the channels, and passes the rest. Its channels are divided into "east" and "west" sides of the network, and is the only OADM to physically denote the separation of east and west (the others assume a point-to-point topology or ring that is mostly passthrough). The older models went by part number CWDM-MUX-AD-xxxx and used SC connectors

CWDM-OADM4-x=

These four-channel OADM's add/drop four of the channels (1470, 1490, 1510, 1530 for option 1, $1550,1570,1590$, and 1610 for option 2), and passes the rest. Each channel is sent to one input/output port. The previous model (CWDM-MUX-4) only did four lambdas (1470, 1510, 1550, and

CWDM-MUX8A=

This eight-channel OADM add/drops all eight of the channels, and does not pass any. Each channel is sent to one input/output port. The older model was part number CWDM-MUX-8 and used SC

All eleven OADM's have physical dimensions of $8.3^{\prime \prime} \times 1.1^{\prime \prime} \times 10.4$ " ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$). Two OADM's fit in the OADM chassis (CWDM-CHASSIS-2=), which takes up 1 RU and is standard 19" rackmount

All new MUX chassis and SFP's use LC fiber connectors. GBIC versions use SC fiber connectors.
Insertion Losses (New)

MUX	maxax Insemmon	Add/Dro p
Pass		
OADM4-xxx	1.5	1.5
MUX8A	1.8	2.1

Insertion Losses (Old)

MUX	Max Insertion Loss(dB)		
	Add	Drop	Pass
MUX-AD-xxxx=	1.9	2.3	2
MUX-4=	4	5	2.6
MUX-8=	4	5	N/A

Portable Product Sheet - GBlC's

Cisco Srstems

DVWDM GBIC's
DWDM GBIC's are configured to emit a laser at a particular wavelength (lambda), compatible with DWDM systems operating in the ITU ranges listed below. Since they all operate within a discrete, well-known spectrum, they can be optically amplified.

Parameter	Symbol	Min	Typica I	Max	Units
Supply current	I_{s}		250	350	mA
Surge current	$\mathrm{I}_{\text {Surge }}$			+0	mA
Input voltage	V_{cc}	4.75	5	5.25	V
Spectral Width	λ_{20}			0.3	nm
Transmitter center wavelength	λ	$(\mathrm{x}-100)$	x	$(\mathrm{x}+100)$	pm
Side mode suppression ratio	SMSR	30			dB
Transmitter optical output oower	$\mathrm{P}_{\text {out }}$	0		3	dBm
Receiver optical input power	P_{in}	-28		-7	dBm
Optical input wavelength	$\lambda_{\text {in }}$	1450		1620	nm
Transmitter extinction ratio	OMI	9			dB

Product Number	Description	ITU Chan.
DWDM-GBIC-60.61	1000BASE-DWDM 1560.61 Nm GBIC (100 GHz ITU	21
DWDM-GBIC-59.79	1000BASE-DWDM 1559.79 Nm GBIC (100 GHz ITU	22
DWDM-GBIC-58.98	1000BASE-DWDM 1558.98 Nm GBIC (100 GHz ITU	23
DWDM-GBIC-58.17	1000BASE-DWDM 1558.17 Nm GBIC (100 GHz ITU	24
DWDM-GBIC-56.55	1000BASE-DWDM 1556.55 Nm GBIC (100 GHz ITU	26
DWDM-GBIC-55.75	1000BASE-DWDM 1555.75 Nm GBIC (100 GHz ITU	27
DWDM-GBIC-54.94	1000BASE-DWDM 1554.94 Nm GBIC (100 GHz ITU	28
DWDM-GBIC-54.13	1000BASE-DWDM 1554.13 Nm GBIC (100 GHz ITU	29
DWDM-GBIC-52.52	1000BASE-DWDM 1552.52 Nm GBIC (100 GHz ITU	31
DWDM-GBIC-51.72	1000BASE-DWDM 1551.72 Nm GBIC (100 GHz ITU	32
DWDM-GBIC-50.92	1000BASE-DWDM 1550.92 Nm GBIC (100 GHz ITU	33
DWDM-GBIC-50.12	1000BASE-DWDM 1550.12 Nm GBIC (100 GHz ITU	34
DWDM-GBIC-48.51	1000BASE-DWDM 1548.51 Nm GBIC (100 GHz ITU	36
DWDM-GBIC-47.72	1000BASE-DWDM 1547.72 Nm GBIC (100 GHz ITU	37
DWDM-GBIC-46.92	1000BASE-DWDM 1546.92 Nm GBIC (100 GHz ITU	38
DWDM-GBIC-46.12	1000BASE-DWDM 1546.12 Nm GBIC (100 GHz ITU	39
DWDM-GBIC-44.53	1000BASE-DWDM 1544.53 Nm GBIC (100 GHz ITU	41
DWDM-GBIC-43.73	1000BASE-DWDM 1543.73 Nm GBIC (100 GHz ITU	42
DWDM-GBIC-42.94	1000BASE-DWDM 1542.94 Nm GBIC (100 GHz ITU	43
DWDM-GBIC-42.14	1000BASE-DWDM 1542.14 Nm GBIC (100 GHz ITU	44
DWDM-GBIC-40.56	1000BASE-DWDM 1540.56 Nm GBIC (100 GHz ITU	46
DWDM-GBIC-39.77	1000BASE-DWDM 1539.77 Nm GBIC (100 GHz ITU	47
DWDM-GBIC-38.98	1000BASE-DWDM 1538.98 Nm GBIC (100 GHz ITU	48
DWDM-GBIC-38.19	1000BASE-DWDM 1538.19 Nm GBIC (100 GHz ITU	49
DWDM-GBIC-36.61	1000BASE-DWDM 1536.61 Nm GBIC (100 GHz ITU	51
DWDM-GBIC-35.82	1000BASE-DWDM 1535.82 Nm GBIC (100 GHz ITU	52
DWDM-GBIC-35.04	1000BASE-DWDM 1535.04 Nm GBIC (100 GHz ITU	53
DWDM-GBIC-34.25	1000BASE-DWDM 1534.25 Nm GBIC (100 GHz ITU	54
DWDM-GBIC-32.68	1000BASE-DWDM 1532.68 Nm GBIC (100 GHz ITU	56
DWDM-GBIC-31.90	1000BASE-DWDM 1531.90 Nm GBIC (100 GHz ITU	57
DWDM-GBIC-31.12	1000BASE-DWDM 1531.12 Nm GBIC (100 GHz ITU	58
DWDM-GBIC-30.33	1000BASE-DWDM 1530.33 Nm GBIC (100 GHz ITU	59

Portable Product Sheet - GBlC's

Cisco Systems

XENPAK and X2 10GE Optics

Xenpak optics are modular interfaces used to select the layer 1 connectivity option for 10GE transmission. They are used on all 10GE interfaces, save the original 1-port 10GE linecard for the 6500/7600 series switches and routers. X2 optics are essentially identical, but a slightly smaller form factor.

Feature	LX4	CX4	SR	LR	ER
TX min. (dBm)	n/a	N/A	-7.3	-8.2	-4.7
TX max. (dBm)	-0.5 per lane		n/a	0.5	4
RX min. (dBm)	-14.4 per lane		-9.9	-14.4	-15.8
RX max. (dBm)	-0.5 per lane		-1	0.5	-1
Tx/Rx Wavelength (nm)	lanes, 1269-135		840-860	1260-1355	1530-1565
Dimensions	4.76 in (121mm) D x 1.42 in (36mm) W $\times 0.47$ in (18mm) H				
Weight	$0.29 \mathrm{lb}(0.13 \mathrm{~kg})$				
Temp (Storage)	$-40^{\circ} \mathrm{F}$ to $167^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.75^{\circ} \mathrm{C}\right)$				
Temp (Operating)	$0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$				
Cable Type	MMF	Copper	MMF	SMF	SMF
Max Tx Distance (typ)	300m	15m	35m	10km	40km
Power Usage (Max)	8W				

Xenpak Picture

Portable Product Sheet - GBlC's

100BaseFX Transceiver
This SFP is intended to provide a 100BaseFX connection to other switches, facilitating transitions to

Optical Characteristics						
Wavelength (nanometers)			Fiber Type	Core Size (micron)	Modal Bandwidth (MHz/km)	Cable Distanc e
Minimum: 1270	Typical: 1300	$\begin{aligned} & \text { Max: } \\ & 1380 \end{aligned}$	MMF	$\begin{gathered} 50 / 125 \\ 62.5 / 125 \end{gathered}$	500	6,562 feet (2 km)

Environmental Ranges	
Operating temperature	32 to $113^{\circ} \mathrm{F}\left(0\right.$ to $\left.45^{\circ} \mathrm{C}\right)$
Storage temperature	-40 to $176^{\circ} \mathrm{F}\left(-40\right.$ to $\left.80^{\circ} \mathrm{C}\right)$
Relative humidity	10 to $85 \%($ noncondensing $)$
Operating altitude	Up to $10,000 \mathrm{ft}(3049 \mathrm{~m})$
Storage altitude	Up to $15,000 \mathrm{ft}(4573 \mathrm{~m})$

Power Requirements	3.32 to 3.47 V	
Supply voltage	405 to 450 mA	
Supply current	1.5 W	
Power dissipation		

Physical Dimensions	
Weight	$0.6 \mathrm{oz} .(17 \mathrm{~g})$
Dimensions $(H \times \mathrm{D} \times \mathrm{W})$	$0.39 \times 2.23 \times 0.54 \mathrm{in} .(9.80 \times 56.70 \times 13.8 \mathrm{~mm})$

Portable Product Sheet - GBlC's

GBIC Compatibility Chart
Green $=$ Supported (check IOS/CatOS Release Notes for version compatibility) Red $=$ Not Supported

Device	GBIC					GigastackX3500-XL	CWDM	DWDM
	5484	5486	5487	5482	5483			
Switches								
2912MF-XL								
2924M-XL								
2948G								
2948G-L3								
2950G-xx-E1								
$2980 \mathrm{C}(\mathrm{A})$								
3500XL Series								
3550 Series								
4908G-L3								
4912								
$4000 \text { (CatOS) }$								
4000 (Native)								
5000								
6000 (CatOs)								
6000 (Native)								
Routers								
26/36/3700								
7200								
7300								
7600								
10000								
12000								

Notes - GBIC/SFP Compatibility

Other products generally accept only the SX and LX/LH versions of the GBIC/SFP's. Note that the 6500 series switch and the 7600 series router are essentially the same box and support the same GBIC/SFP/XENPAK's. Just because an area is green does not mean that every combination works. What it means is that at least one type of card or interface works with the GBIC/SFP on at least one CatOS/IOS combination. Check the release notes to ensure your combination works.

Portable Product Sheet - GBIC's

SFP/Xenpak Compatibility Chart
Green $=$ Supported (check IOS/CatOS Release Notes for version compatibility) Red = Not Supported

Device	SFP							Xenpak 10GE	X2
	GLC-SX	GLC-LX	GLC-ZX	GLC-T	100FX	CWDM	CLC-BX		
Switches									
2940									
2948G-GE-TX									
2970G-24TS									
3560 Series									
3750 Series									
4000 (CatOS)									
4000 (Native)									
4948									
6000 (CatOS)									
6000 (Native)									
Routers									
28 xx									
38 xx									
12000									

Notes - GBIC/SFP Compatibility
Other products generally accept only the SX and LX/LH versions of the GBIC/SFP's. Just because an area is green does not mean that every combination works - for instance, though the 12000 series router can accept a ZX SFP in the 4-port GE card, the 10-port GE card does not. Always check the release notes to ensure your combination works.

